
International Journal Research Publication Analysis

Copyright@ Page 1

INFRASTRUCTURE AS CODE: AUTOMATING AWS

INFRASTRUCTURE PROVISIONING USING TERRAFORM

AND CLOUDFORMATION

Suraj Suthar*1, Mohit Mishra2, Dr. Vishal Shrivastava3, Dr. Akhil Pandey4

1Computer Science and Engineering, Arya College of Engineering & I.T., Jaipur, India.

3 Professor, Computer Science and Engineering, Arya College of Engineering & I.T.

Jaipur, India.

3Associate Professor, Computer Science and Engineering, Arya College of Engineering &

I.T. Jaipur, India

4Professor, Computer Science and Engineering Arya College of Engineering & I.T. Jaipur,

India.

Article Received: 12 October 2025

Article Revised: 02 November 2025

Published on: 22 November 2025

*Corresponding Author: Suraj Suthar

Computer Science and Engineering, Arya College of Engineering & I.T.,

Jaipur, India.

ABSTRACT

Infrastructure Automation has become one of the most transformative aspects in the modern

DevOps environment, primarily due to the rapid growth of cloud computing and dynamic

software deployment models. Traditional manual provisioning of cloud resources often

results in configuration drift, human errors, scalability challenges and maintainability issues.

Infrastructure as Code (IaC) introduces a paradigm shift where infrastructure is defined,

configured, deployed, modified, and version-controlled entirely through machine-readable

code. In this research paper, we analyze IaC practices in depth with a focus on AWS cloud

environments and its automation using Terraform and AWS CloudFormation. AWS

CloudFormation is a native AWS IaC service, while Terraform is an open-source, multi-

cloud declarative provisioning tool. Both enable full lifecycle automation of infrastructure

provisioning, infrastructure standardization, disaster recovery readiness, repeatability,

traceability, reusability and rapid scaling. The paper also explores implementation strategies,

detailed workflows, template design principles, modular practices, security considerations,

version control alignment, CI/CD integration, configuration state handling, comparative

evaluations and enterprise adoption patterns. The paper concludes with future predictions of

International Journal Research Publication Analysis

2025 Volume: 01 Issue: 06 www.ijrpa.com ISSN 2456-9995 Review Article

Page: 01-16

http://www.ijrpa.com/

International Journal Research Publication Analysis

Copyright@ Page 2

IaC evolution such as Policy as Code (PaC), AI-Driven Infrastructure Generation,

Autonomous Cloud Orchestration and Zero-touch Operations. This study aims to provide a

complete academic and technical depth acknowledgement about IaC for AWS using

Terraform and CloudFormation for building modern, scalable, secure and automated

application infrastructure.

CHAPTER – 1 INTRODUCTION

1.1 Background

The era of cloud computing has revolutionized how IT infrastructure is deployed and

maintained. Companies no longer purchase physical servers and configure hardware

manually. Instead, compute, networking, storage, load balancers, databases, container

orchestration and serverless resources are available as on-demand cloud services. This shift

from static infrastructure management to elastic cloud infrastructure has increased the need

for automation. The fast scaling nature of cloud infrastructure demands a mechanism to

deploy environments quickly, safely, and repeatedly without manual configuration

inconsistencies.

Infrastructure as Code (IaC) has emerged as the backbone of modern cloud infrastructure

automation. IaC enables developers and DevOps engineers to write infrastructure

configuration in programming style declarative and procedural code formats. This eliminates

the manual console-based provisioning approach. Using IaC, full cloud architecture can be

version controlled, audited, reproduced, validated and governed as software assets. IaC

ensures predictability, immutability, controlled releases, faster deployments and massive

operational efficiency.

AWS (Amazon Web Services) provides built-in infrastructure provisioning service named

CloudFormation whereas HashiCorp Terraform is an external open-source tool widely

adopted globally for multi-cloud automation. Terraform supports AWS, Azure, GCP, Oracle

Cloud, Heroku and On-prem simultaneously. This research paper examines how both

Terraform and CloudFormation automate AWS infrastructure provisioning through the IaC

approach and compares them academically, practically and strategically from DevOps

engineering viewpoint.

International Journal Research Publication Analysis

Copyright@ Page 3

1.2 Need of Automation in AWS Cloud Infrastructure

AWS is the world’s largest cloud provider with hundreds of services. Manual provisioning

through AWS Console can cause:

Problem Result

Manual Human Changes Inconsistency & Misconfiguration risks

Slow new environment creation Delayed development and testing

Lack of traceability Hard to track changes and rollback

High Production Risk Chance of untested configuration goes live

Difficult DR strategies Manual provisioning increases downtime

Therefore automation is required to handle:

 repeatability

 standardization of infrastructure

 stable provisioning

 lifecycle management

 large scale deployments across multiple teams

IaC solves these issues by defining resources using scripts/templates.

1.3 Introduction to Terraform and CloudFormation

Attribute CloudFormation Terraform

Tool owner AWS Native HashiCorp

Multi-Cloud Support Only AWS Yes (Multi-Cloud)

Language JSON / YAML HCL (HashiCorp Configuration Language)

State Management Internal AWS Local / Remote Backends

Extensibility Limited Very High

Both are IaC tools but with different architectural behaviors.

1.4 Role of IaC in DevOps Lifecycle

Terraform plan and apply steps or CloudFormation stack deploy can be integrated with

pipelines like:

 AWS CodePipeline

International Journal Research Publication Analysis

Copyright@ Page 4

 Jenkins

 GitHub Actions

 GitLab CI/CD

 Azure DevOps

This makes environment provisioning fully automated with code versioning.

1.5 Scope of Research

This research covers full academic exploration of IaC, AWS provisioning automation,

Terraform vs CloudFormation deep comparison, implementation architecture, benefits,

challenges, IaC maturity levels and future direction.

CHAPTER – 2 LITERATURE REVIEW

2.1 Previous Manual Infrastructure Provisioning Approaches

Before IaC, sysadmins used manual scripts, shell provisioning, click-based consoles and

standard server build documentation. These methods were slow, repetitive and error prone.

Enterprise environments suffered:

 configuration drift

 delayed deployments

 difficulty replicating environments

 dependency mismatch problems

2.2 Evolution of IaC

IaC evolved in four phases:

Era Infrastructure Approach Nature

Pre-Automation Manual Hardware Provisioning Physical

Script Automation Bash / Shell Scripts for Setup Partial

Cloud Provisioning Tools CLI + APIs Semi Automated

IaC Tools Terraform / CloudFormation Fully Automated

2.3 Research Findings in Existing Papers

Existing literature highlights:

 IaC removes maintenance complexity

 DevOps is impossible without IaC

 IaC reduces cloud cost by optimized provisioning

International Journal Research Publication Analysis

Copyright@ Page 5

 IaC reduces operational risks by governance automation

2.4 Gap Identification

No previous research paper provided deep academic comparison of CloudFormation vs

Terraform specifically from AWS automation and DevOps alignment perspective.

This paper fills that academic gap.

CHAPTER – 3 PROBLEM STATEMENT

Cloud infrastructure provisioning in AWS manually through AWS Console or using semi-

automated scripts has several limitations. Creating EC2 instances, VPC, IAM roles, Load

Balancers, Security Groups, RDS Databases, Lambda functions and Cloud Network routing

via GUI introduces operational difficulties at enterprise scale. As cloud environments expand,

manual provisioning becomes nearly impossible to maintain. Every time a developer or

organization migrates, scales, modifies capacity or deploys new services, the infrastructure

complexity grows exponentially.

Manual provisioning creates problems such as:

1. Configuration drifts between environments (DEV, QA, PROD)

2. Lack of versioning and traceability

3. High human dependency and error risk

4. Slow provisioning lifecycle

5. No consistency control policy enforcement

6. No deterministic outcome on deployment

7. Difficult rollback capability

8. Difficulty in multi-region and multi-account deployment

Therefore, there is a need for a mechanism where infrastructure generation, modification and

destruction can happen through fully controlled, automated, traceable and version-controlled

code rather than clicking and configuring manually.

CHAPTER – 4 OBJECTIVES

The major objectives of this research include:

1. To study Infrastructure as Code principles and its role in DevOps engineering.

2. To analyze how Terraform and CloudFormation automate AWS infrastructure

provisioning.

International Journal Research Publication Analysis

Copyright@ Page 6

3. To compare AWS CloudFormation and Terraform based on architecture, scalability,

usability, security, multi-cloud capabilities, cost impact and flexibility.

4. To evaluate infrastructure lifecycle management using IaC tools.

5. To identify advantages, limitations and enterprise adoption impact of using IaC.

6. To define IaC best practices for AWS enterprise ecosystems.

7. To explore future direction of IaC such as Policy as Code, GitOps, FinOps, AI and

Autonomous Infra.

8. To document how IaC improves development velocity, reliability, standardization and

repeatability.

CHAPTER – 5 EXISTING SYSTEM

5.1 Description of Existing Manual Provisioning Workflow

The existing cloud provisioning process before IaC mainly involved:

 Logging into AWS Console

 Using UI to create resources

 Using CLI commands manually

 Using custom shell scripts for resource preparation

 Manual configuration linking between services

This old system caused serious challenges in enterprise cloud migration programs because

each resource creation required admin to manage manual settings. If infrastructure grew

large, maintaining consistency became extremely difficult.

5.2 Limitations of Existing System

Parameter Manual Provisioning Result

Speed Slow deployments

Human Error Very High

Reproducibility Very Low

Version Control Not possible

Verification No validation

Audit Trail Not present

Cost Optimization Hard to measure

Organizations with 100+ environments cannot scale manually.

International Journal Research Publication Analysis

Copyright@ Page 7

CHAPTER – 6 PROPOSED SYSTEM

6.1 Infrastructure as Code Enablement

The proposed system replaces manual infrastructure deployments with complete declarative

code-based provisioning using:

 AWS CloudFormation Templates

 Terraform HCL Configuration Files

This IaC system automates provisioning of entire AWS ecosystems including:

 Compute Instances

 Serverless Architecture

 Storage Buckets

 Networking (VPC / Subnets / Gateways)

 Database and Data Streams

 Access Control and IAM

6.2 Proposed Solution Features

Feature IaC Delivery

Automated Deployment Yes

Multi-Environment Replication Yes

Version Control Enabled Yes

Controlled Infra Changes Yes

Security Guardrails Yes

Drift Detection Capable Yes

6.3 Why Terraform AND CloudFormation both are relevant

CloudFormation Strengths Terraform Strengths

AWS Native Multi-Cloud

Fully integrated AWS IAM and Service Catalog Flexible modules and reusable code

Built-in rollbacks External remote state mgmt

AWS standard compliance Enterprise automation leadership

Both have unique value and can co-exist.

International Journal Research Publication Analysis

Copyright@ Page 8

CHAPTER – 7 METHODOLOGY

This research methodology is designed to examine how IaC automates AWS cloud

provisioning using Terraform and CloudFormation. The methodology includes analytical

study, technical evaluation, comparative assessment, documentation review, architectural

understanding and real-world DevOps implementation patterns.

7.1 Research Approach

This research follows a descriptive and comparative methodology. The process includes:

1. Study theoretical fundamentals of IaC

2. Analyze AWS cloud provisioning techniques

3. Compare Terraform vs CloudFormation

4. Study enterprise adoption patterns

5. Identify benefits, drawbacks and use-case alignment

6. Understand lifecycle management and process automation via DevOps

7. Evaluate security and compliance benefits

7.2 Data Collection Method

Data for analysis comes from:

 AWS Documentation

 Terraform Documentation

 DevOps Case Studies

 Cloud Infrastructure Benchmark reports

 Industry Whitepapers

 Real-world IaC implementation patterns

7.3 Research Method Flow

Phase Activity

Theoretical Analysis Study IaC concepts

Tool Understanding Terraform + CloudFormation working

Implementation Mapping Define provisioning flow

Comparative Evaluation Feature based comparison

Result Derivation Identify enterprise suitability

International Journal Research Publication Analysis

Copyright@ Page 9

Phase Activity

Conclusion Produce final findings

CHAPTER – 8 WORKING / FLOW

IaC working model is based on declaring infrastructure components in code form. Instead of

configuring infrastructure manually, every cloud resource is defined as code and stored in

version control repositories.

8.1 Standard IaC Flow Model

1. Developer writes Infrastructure Code

2. Code stored in Git (Version Control)

3. Code reviewed and approved

4. Pipeline executes provisioning engine

5. IaC tool generates infrastructure

6. State is stored and monitored

7. Validation and testing done

8. Deployment environments replicated anywhere

8.2 AWS IaC Flow

Step wise working when provisioning AWS infrastructure:

Step Process

Step-1 Developer writes CloudFormation Template / Terraform Templates

Step-2 Templates pushed to Git Repository

Step-3 CICD triggers IaC execution

Step-4 IaC Engine reads desired state

Step-5 AWS API is invoked for resource creation

Step-6 Resources get configured automatically

Step-7 State stored for further change management

Step-8 Deployment logs stored / monitored

International Journal Research Publication Analysis

Copyright@ Page 10

8.3 Deterministic vs Imperative Execution

IaC uses Declarative Definition where user tells what should exist, not how to run

commands.

This ensures predictable outcomes.

CHAPTER – 9 SYSTEM ARCHITECTURE & IMPLEMENTATION

This is the most critical chapter where deep understanding of AWS provisioning using

Terraform and CloudFormation is analyzed.

9.1 IaC Architecture Layers

Layer Component Function

Layer-1 IaC Tooling (Terraform/CF) Defines infra template

Layer-2 Version Control Stores code & change history

Layer-3 Execution Engine Applies templates onto cloud

Layer-4 Cloud Provider APIs Creates actual resources

Layer-5 State Management Maintains current infra state

9.2 CloudFormation Architecture

CloudFormation uses:

 CloudFormation Stack

 CloudFormation Templates

 CloudFormation Change Sets

 AWS IAM Integration

CloudFormation internally manages state automatically. Every deployment results in a Stack

which represents infrastructure representation.

9.3 Terraform Architecture

Terraform uses:

 Terraform Configuration Files

 Terraform Providers

 Terraform State Files (.tfstate)

 Terraform Modules

 Terraform Remote Backend

International Journal Research Publication Analysis

Copyright@ Page 11

Terraform maintains state externally and requires secure storage (S3 backend commonly used

for AWS).

9.4 Resource Declaration Example Model (Conceptual)

Terraform Example Pattern (Conceptual):

resource "aws_instance" "example" {

ami = "ami-0947d2ba12ee1ff75"

instance_type = "t2.micro"

}

CloudFormation Example Pattern (Conceptual YAML):

Resources:

EC2Instance:

Type: AWS::EC2::Instance

 Properties:

InstanceType: t2.micro

ImageId: ami-0947d2ba12ee1ff75

9.5 Lifecycle Execution Phases

Lifecycle Stage Terraform Role CloudFormation Role

Plan terraform plan Change Sets

Apply terraform apply create-stack

Update terraform apply again update-stack

Destroy terraform destroy delete-stack

9.6 Infrastructure State Handling Importance

State enables:

 drift detection

 auditing

 forecasting and tracking

 safe re-provisioning

9.7 Implementation in Enterprise Pipelines

IaC is integrated with:

 GitHub Actions

International Journal Research Publication Analysis

Copyright@ Page 12

 Jenkins

 AWS CodePipeline

 GitLab CI/CD

 Azure DevOps

Implementation Procedure:

1. Developer writes Template

2. Template stored in Git branch

3. Merge Request opened

4. Review + Approval

5. Pipeline triggers IaC execution

6. AWS environment generated automatically

9.8 Security in IaC Deployment

Security policies can be enforced as:

 IAM role restrictions

 Template guard policies

 Encryption enabled resource provisioning

 secrets never stored in code

 secure backend for state encryption

CHAPTER – 10 ADVANTAGES OF INFRASTRUCTURE AS CODE

Infrastructure as Code delivers massive long-term structural improvement across software

development, infrastructure engineering, cost management, operational excellence, testing

methodologies, deployment repeatability and long-term cloud governance.

10.1 Provisioning Speed and Velocity

IaC drastically reduces the time needed to provision infrastructure. What earlier took days or

hours with manual provisioning now takes minutes or even seconds. Teams can create

multiple full project environments instantly during development or testing.

10.2 Elimination of Configuration Drift

Since configuration is version-controlled, any deviation between DEV, QA, Stage and

Production environments is almost eliminated. Drift detection ensures infrastructure remains

stable and consistent.

International Journal Research Publication Analysis

Copyright@ Page 13

10.3 Enhances Collaboration between DevOps and Development Teams

Infra code stored inside Git brings developers, cloud engineers, security team and ops team

together into same development ecosystem.

10.4 Reduced Human Error and Increased Reliability

Since provisioning is automated, the dependency on human command execution reduces. IaC

avoids misconfigurations that normally arise due to manual steps.

10.5 Cost Optimization and Cloud Governance

With IaC:

 unused infrastructure can be destroyed anytime

 temporary envs can be created & deleted automatically

 cluster downsizing & scaling can be governed programmatically

10.6 Automated Disaster Recovery Strategy

IaC helps DR planning because full environment can be recreated in minutes in a new region.

Traditional DR setups required backup servers always running.

10.7 Critical Foundation for DevOps, GitOps, SecOps, FinOps

IaC is the base layer of real DevOps automation. Without IaC, DevOps transformation cannot

achieve true automation maturity.

CHAPTER – 11 COMPARISON OF TERRAFORM AND CLOUD FORMATION

This is one of the main core chapters of this research.

11.1 Detailed Technical Comparison Table

Feature Category Terraform CloudFormation

Cloud Support Multi-cloud AWS Only

Language HCL (More readable) JSON / YAML

State File External State required Internal

Modularization Very High Medium

Learning Curve Moderate Easy for AWS ppl

Extensibility Very High Limited

Drift Detection Yes Yes

International Journal Research Publication Analysis

Copyright@ Page 14

Feature Category Terraform CloudFormation

Plan Execution terraform plan Changesets

Enterprise Adoption Rate Very High worldwide High in AWS heavy orgs

OSS Ecosystem Massive Modules Registry Limited

Vendor Lock-in Risk Low High (AWS Only)

Resource Creation Speed Faster Depends on AWS internal processing

11.2 Where Terraform is the Best Choice?

 multi-cloud companies

 hybrid cloud workloads

 large-scale enterprise automation engines

 advanced module driven repeatable deployments

 organizations practicing GitOps frameworks heavily

11.3 Where CloudFormation is the Best Choice?

 AWS only heavy workloads

 banking / government sectors requiring AWS native compliance

 organizations that want native AWS rollback and support

 teams new to IaC learning step by step

11.4 Combined Dual Pattern Usage Trend

Some companies even use both tools at same time. Example:

 CloudFormation for core AWS security baselines and governance

 Terraform for application layer and multi-purpose services

CHAPTER – 12 LIMITATIONS

12.1 IaC Complexity

IaC requires programming knowledge. Infrastructure teams with only system admin

background need to upskill.

12.2 State Mismanagement Risk

If Terraform state file is lost or corrupted, environment provisioning breaks.

12.3 Template Maintenance

International Journal Research Publication Analysis

Copyright@ Page 15

As template count grows, hundreds of modules may need mapping which increases

complexity of documentation and version alignment.

12.4 Tool Dependency Risk

If chosen tool changes license (Terraform recently), or loses support, migration cost is very

high.

12.5 Security Misconfigurations in Code

If bad code is deployed — then large-scale mistakes can be replicated worldwide instantly.

CHAPTER – 13 RESULTS

After implementing Infrastructure as Code using AWS CloudFormation and Terraform, the

results show significant improvements in infrastructure provisioning speed, stability,

reliability, and repeatability. IaC enabled teams to deploy AWS environments consistently

without manual errors and with full traceability. Deployment time reduced drastically from

hours to minutes. Teams were able to create and destroy environments on-demand, saving

cost and improving development agility. Version control integration provided complete

infrastructure change history which improved auditing and rollback capability. Multi-cloud

readiness through Terraform enabled hybrid enterprise adoption as well. Overall, IaC allowed

full DevOps pipeline integration for AWS provisioning automation.

CHAPTER – 14 FUTURE SCOPE

Future of Infrastructure Automation is moving beyond declarative provisioning towards

autonomous cloud orchestration. Advanced systems will integrate:

 Policy as Code (OPA / Sentinel)

 AI Based Template Generation

 Self-Healing Infrastructure

 FinOps Integrated Autoscaling

 Security as Code enforcement

 Event-driven infra orchestration with serverless

 Full Cloud Autonomy without human command triggers

Terraform, CloudFormation and future IaC engines will evolve towards Zero-Touch

Operations, where cloud can scale, deploy, destroy and optimize itself based on predictive

intelligence.

International Journal Research Publication Analysis

Copyright@ Page 16

CHAPTER – 15 CONCLUSION

Infrastructure as Code represents a foundational shift in how cloud infrastructure is deployed

and managed. AWS provisioning using Terraform and CloudFormation allows code-based,

repeatable, secure, fast, and auditable infrastructure creation. Both tools are extremely

powerful in enterprise DevOps models, with CloudFormation being AWS-native and

Terraform enabling multi-cloud automation flexibility. IaC eliminates configuration drift,

reduces operational risks, saves cost, enhances scalability, supports DevOps pipelines and

dramatically increases development speed. The adoption of IaC in modern organizations is

now mandatory rather than optional. This research concludes that IaC is the backbone for the

future of automated cloud engineering and is essential for secure, scalable, and production-

grade cloud operations.

REFERENCES

1. HashiCorp Terraform Documentation – www.terraform.io.

2. AWS CloudFormation Official Developer Guide – docs.aws.amazon.com.

3. AWS Well Architected Framework – Amazon Web Services.

4. DevOps Research and Assessment (DORA) Reports 2023.

5. Kief Morris (ThoughtWorks). Infrastructure as Code Book.

6. Google Cloud DevOps Research Whitepapers.

7. NIST Cloud Computing Standards Publication 2022.

8. Martin Fowler – Infrastructure Automation Research Articles.

