\“\emaho,, ,"o
3 <,
,

INFRASTRUCTURE AS CODE: AUTOMATING AWS
INFRASTRUCTURE PROVISIONING USING TERRAFORM
AND CLOUDFORMATION

Suraj Suthar*!, Mohit Mishra?, Dr. Vishal Shrivastava3, Dr. Akhil Pandey*

Computer Science and Engineering, Arya College of Engineering & I.T., Jaipur, India.
3 Professor, Computer Science and Engineering, Arya College of Engineering & I.T.
Jaipur, India.
3Associate Professor, Computer Science and Engineering, Arya College of Engineering &
I.T. Jaipur, India
*Professor, Computer Science and Engineering Arya College of Engineering & I.T. Jaipur,

India.

Article Received: 12 October 2025 *Corresponding Author: Suraj Suthar
Article Revised: 02 November 2025 Computer Science and Engineering, Arya College of Engineering & I.T.,
Published on: 22 November 2025 Jaipur, India.

ABSTRACT

Infrastructure Automation has become one of the most transformative aspects in the modern
DevOps environment, primarily due to the rapid growth of cloud computing and dynamic
software deployment models. Traditional manual provisioning of cloud resources often
results in configuration drift, human errors, scalability challenges and maintainability issues.
Infrastructure as Code (laC) introduces a paradigm shift where infrastructure is defined,
configured, deployed, modified, and version-controlled entirely through machine-readable
code. In this research paper, we analyze laC practices in depth with a focus on AWS cloud
environments and its automation using Terraform and AWS CloudFormation. AWS
CloudFormation is a native AWS laC service, while Terraform is an open-source, multi-
cloud declarative provisioning tool. Both enable full lifecycle automation of infrastructure
provisioning, infrastructure standardization, disaster recovery readiness, repeatability,
traceability, reusability and rapid scaling. The paper also explores implementation strategies,
detailed workflows, template design principles, modular practices, security considerations,
version control alignment, CI/CD integration, configuration state handling, comparative
evaluations and enterprise adoption patterns. The paper concludes with future predictions of

Copyright@ Page 1

2025 Volume: 01 Issue: 06 WWW.I]rpa.COmM ISSN 2456-9995 Review Article

International Journal Research Publication Analysis

Page: 01-16

http://www.ijrpa.com/

International Journal Research Publication Analysis

laC evolution such as Policy as Code (PaC), Al-Driven Infrastructure Generation,
Autonomous Cloud Orchestration and Zero-touch Operations. This study aims to provide a
complete academic and technical depth acknowledgement about laC for AWS using
Terraform and CloudFormation for building modern, scalable, secure and automated

application infrastructure.

CHAPTER -1 INTRODUCTION

1.1 Background

The era of cloud computing has revolutionized how IT infrastructure is deployed and
maintained. Companies no longer purchase physical servers and configure hardware
manually. Instead, compute, networking, storage, load balancers, databases, container
orchestration and serverless resources are available as on-demand cloud services. This shift
from static infrastructure management to elastic cloud infrastructure has increased the need
for automation. The fast scaling nature of cloud infrastructure demands a mechanism to
deploy environments quickly, safely, and repeatedly without manual configuration

inconsistencies.

Infrastructure as Code (laC) has emerged as the backbone of modern cloud infrastructure
automation. laC enables developers and DevOps engineers to write infrastructure
configuration in programming style declarative and procedural code formats. This eliminates
the manual console-based provisioning approach. Using 1aC, full cloud architecture can be
version controlled, audited, reproduced, validated and governed as software assets. laC
ensures predictability, immutability, controlled releases, faster deployments and massive

operational efficiency.

AWS (Amazon Web Services) provides built-in infrastructure provisioning service named
CloudFormation whereas HashiCorp Terraform is an external open-source tool widely
adopted globally for multi-cloud automation. Terraform supports AWS, Azure, GCP, Oracle
Cloud, Heroku and On-prem simultaneously. This research paper examines how both
Terraform and CloudFormation automate AWS infrastructure provisioning through the laC
approach and compares them academically, practically and strategically from DevOps

engineering viewpoint.

Copyright@ Page 2

International Journal Research Publication Analysis

1.2 Need of Automation in AWS Cloud Infrastructure
AWS is the world’s largest cloud provider with hundreds of services. Manual provisioning
through AWS Console can cause:

Problem Result

Manual Human Changes Inconsistency & Misconfiguration risks

Slow new environment creation||Delayed development and testing

Lack of traceability Hard to track changes and rollback
High Production Risk Chance of untested configuration goes live
Difficult DR strategies Manual provisioning increases downtime

Therefore automation is required to handle:
o repeatability

« standardization of infrastructure

o stable provisioning

 lifecycle management

o large scale deployments across multiple teams
laC solves these issues by defining resources using scripts/templates.

1.3 Introduction to Terraform and CloudFormation

Attribute CloudFormation||Terraform

Tool owner AWS Native HashiCorp

Multi-Cloud Support/|Only AWS Yes (Multi-Cloud)

Language JSON/YAML |HCL (HashiCorp Configuration Language)

State Management | Internal AWS Local / Remote Backends

Extensibility Limited Very High

Both are laC tools but with different architectural behaviors.

1.4 Role of 1aC in DevOps Lifecycle

Terraform plan and apply steps or CloudFormation stack deploy can be integrated with
pipelines like:

e AWS CodePipeline

Copyright@ Page 3

International Journal Research Publication Analysis

e Jenkins

e GitHub Actions
« GitLab CI/CD
e Azure DevOps

This makes environment provisioning fully automated with code versioning.

1.5 Scope of Research
This research covers full academic exploration of IaC, AWS provisioning automation,
Terraform vs CloudFormation deep comparison, implementation architecture, benefits,

challenges, 1aC maturity levels and future direction.

CHAPTER -2 LITERATURE REVIEW

2.1 Previous Manual Infrastructure Provisioning Approaches

Before 1aC, sysadmins used manual scripts, shell provisioning, click-based consoles and
standard server build documentation. These methods were slow, repetitive and error prone.
Enterprise environments suffered:

e configuration drift

e delayed deployments

o difficulty replicating environments

e dependency mismatch problems

2.2 Evolution of 1aC
laC evolved in four phases:

Era Infrastructure Approach Nature
Pre-Automation Manual Hardware Provisioning|[Physical

Script Automation Bash / Shell Scripts for Setup ||Partial

Cloud Provisioning Tools|CLI + APIs Semi Automated
laC Tools Terraform / CloudFormation |[Fully Automated

2.3 Research Findings in Existing Papers
Existing literature highlights:

¢ laC removes maintenance complexity

e DevOps is impossible without 1aC

e laC reduces cloud cost by optimized provisioning

Copyright@ Page 4

International Journal Research Publication Analysis

e laC reduces operational risks by governance automation

2.4 Gap ldentification
No previous research paper provided deep academic comparison of CloudFormation vs

Terraform specifically from AWS automation and DevOps alignment perspective.

This paper fills that academic gap.

CHAPTER - 3 PROBLEM STATEMENT

Cloud infrastructure provisioning in AWS manually through AWS Console or using semi-
automated scripts has several limitations. Creating EC2 instances, VPC, 1AM roles, Load
Balancers, Security Groups, RDS Databases, Lambda functions and Cloud Network routing
via GUI introduces operational difficulties at enterprise scale. As cloud environments expand,
manual provisioning becomes nearly impossible to maintain. Every time a developer or
organization migrates, scales, modifies capacity or deploys new services, the infrastructure

complexity grows exponentially.

Manual provisioning creates problems such as:

Configuration drifts between environments (DEV, QA, PROD)
Lack of versioning and traceability

High human dependency and error risk

Slow provisioning lifecycle

No consistency control policy enforcement

No deterministic outcome on deployment

Difficult rollback capability

© N o gk~ 0w D P

Difficulty in multi-region and multi-account deployment

Therefore, there is a need for a mechanism where infrastructure generation, modification and
destruction can happen through fully controlled, automated, traceable and version-controlled

code rather than clicking and configuring manually.

CHAPTER -4 OBJECTIVES

The major objectives of this research include:

1. To study Infrastructure as Code principles and its role in DevOps engineering.

2. To analyze how Terraform and CloudFormation automate AWS infrastructure

provisioning.

Copyright@ Page 5

International Journal Research Publication Analysis

N o g &

To compare AWS CloudFormation and Terraform based on architecture, scalability,
usability, security, multi-cloud capabilities, cost impact and flexibility.

To evaluate infrastructure lifecycle management using laC tools.

To identify advantages, limitations and enterprise adoption impact of using laC.

To define l1aC best practices for AWS enterprise ecosystems.

To explore future direction of laC such as Policy as Code, GitOps, FinOps, Al and
Autonomous Infra.

To document how laC improves development velocity, reliability, standardization and

repeatability.

CHAPTER -5 EXISTING SYSTEM

5.1 Description of Existing Manual Provisioning Workflow

The existing cloud provisioning process before 1aC mainly involved:

Logging into AWS Console

Using Ul to create resources

Using CLI commands manually

Using custom shell scripts for resource preparation

Manual configuration linking between services

This old system caused serious challenges in enterprise cloud migration programs because

each resource creation required admin to manage manual settings. If infrastructure grew

large, maintaining consistency became extremely difficult.

5.2 Limitations of Existing System

Parameter Manual Provisioning Result

Speed Slow deployments

Human Error Very High

Reproducibility |[Very Low

Version Control |Not possible

Verification No validation

Audit Trail Not present

Cost Optimization|Hard to measure

Organizations with 100+ environments cannot scale manually.

Copyright@ Page 6

International Journal Research Publication Analysis

CHAPTER - 6 PROPOSED SYSTEM

6.1 Infrastructure as Code Enablement

The proposed system replaces manual infrastructure deployments with complete declarative
code-based provisioning using:

e AWS CloudFormation Templates

e Terraform HCL Configuration Files

This 1aC system automates provisioning of entire AWS ecosystems including:
e Compute Instances

e Serverless Architecture

e Storage Buckets

e Networking (VPC / Subnets / Gateways)

e Database and Data Streams

e Access Control and IAM

6.2 Proposed Solution Features

Feature 1aC Delivery

Automated Deployment Yes

Multi-Environment Replication||Yes

Version Control Enabled Yes
Controlled Infra Changes Yes
Security Guardrails Yes
Drift Detection Capable Yes

6.3 Why Terraform AND CloudFormation both are relevant

CloudFormation Strengths Terraform Strengths

AWS Native Multi-Cloud

Fully integrated AWS IAM and Service Catalog||Flexible modules and reusable code

Built-in rollbacks External remote state mgmt

AWS standard compliance Enterprise automation leadership

Both have unique value and can co-exist.

Copyright@ Page 7

International Journal Research Publication Analysis

CHAPTER -7 METHODOLOGY

This research methodology is designed to examine how laC automates AWS cloud

provisioning using Terraform and CloudFormation. The methodology includes analytical

study, technical evaluation, comparative assessment, documentation review, architectural

understanding and real-world DevOps implementation patterns.

7.1 Research Approach

This research follows a descriptive and comparative methodology. The process includes:

N o g bk~ wDnd e

Study theoretical fundamentals of 1aC

Analyze AWS cloud provisioning techniques

Compare Terraform vs CloudFormation

Study enterprise adoption patterns

Identify benefits, drawbacks and use-case alignment

Understand lifecycle management and process automation via DevOps
Evaluate security and compliance benefits

7.2 Data Collection Method
Data for analysis comes from:

AWS Documentation

Terraform Documentation

DevOps Case Studies

Cloud Infrastructure Benchmark reports
Industry Whitepapers

Real-world 1aC implementation patterns

7.3 Research Method Flow

Phase Activity

Theoretical Analysis Study laC concepts

Tool Understanding Terraform + CloudFormation working

Implementation Mapping||Define provisioning flow

Comparative Evaluation |Feature based comparison

Result Derivation Identify enterprise suitability

Copyright@

Page 8

International Journal Research Publication Analysis

Phase Activity

Conclusion Produce final findings

CHAPTER - 8 WORKING / FLOW
laC working model is based on declaring infrastructure components in code form. Instead of
configuring infrastructure manually, every cloud resource is defined as code and stored in

version control repositories.

8.1 Standard laC Flow Model
Developer writes Infrastructure Code
Code stored in Git (Version Control)
Code reviewed and approved
Pipeline executes provisioning engine
laC tool generates infrastructure
State is stored and monitored
Validation and testing done

© N o o~ w DN PRE

Deployment environments replicated anywhere

8.2 AWS laC Flow

Step wise working when provisioning AWS infrastructure:

Step ||Process

Step-1|Developer writes CloudFormation Template / Terraform Templates

Step-2|[Templates pushed to Git Repository

Step-3||CICD triggers laC execution

Step-4|/laC Engine reads desired state

Step-5|/AWS API is invoked for resource creation

Step-6|[Resources get configured automatically

Step-7||State stored for further change management

Step-8||Deployment logs stored / monitored

Copyright@ Page 9

International Journal Research Publication Analysis

8.3 Deterministic vs Imperative Execution
laC uses Declarative Definition where user tells what should exist, not how to run
commands.

This ensures predictable outcomes.

CHAPTER -9 SYSTEM ARCHITECTURE & IMPLEMENTATION
This is the most critical chapter where deep understanding of AWS provisioning using

Terraform and CloudFormation is analyzed.

9.1 1aC Architecture Layers

Layer |[Component Function

Layer-1|[laC Tooling (Terraform/CF)||Defines infra template

Layer-2([\Version Control Stores code & change history
Layer-3||[Execution Engine Applies templates onto cloud
Layer-4(|Cloud Provider APIs Creates actual resources
Layer-5||State Management Maintains current infra state

9.2 CloudFormation Architecture

CloudFormation uses:

e CloudFormation Stack

e CloudFormation Templates

e CloudFormation Change Sets

e AWS IAM Integration

CloudFormation internally manages state automatically. Every deployment results in a Stack

which represents infrastructure representation.

9.3 Terraform Architecture
Terraform uses:

e Terraform Configuration Files
e Terraform Providers

e Terraform State Files (.tfstate)
e Terraform Modules

e Terraform Remote Backend

Copyright@ Page 10

International Journal Research Publication Analysis

Terraform maintains state externally and requires secure storage (S3 backend commonly used
for AWS).

9.4 Resource Declaration Example Model (Conceptual)
Terraform Example Pattern (Conceptual):

resource "aws_instance" "example" {

ami = "ami-0947d2bal2eelff75"

instance_type = "t2.micro"

}

CloudFormation Example Pattern (Conceptual YAML):
Resources:

EC2Instance:

Type: AWS::EC2::Instance

Properties:

InstanceType: t2.micro

Imageld: ami-0947d2bal2eelff75

9.5 Lifecycle Execution Phases

Lifecycle Stage|Terraform Role CloudFormation Role
Plan terraform plan Change Sets
Apply terraform apply create-stack
Update terraform apply again|update-stack
Destroy terraform destroy delete-stack

9.6 Infrastructure State Handling Importance
State enables:

e drift detection

e auditing

o forecasting and tracking

e safe re-provisioning

9.7 Implementation in Enterprise Pipelines
laC is integrated with:

e GitHub Actions

Copyright@ Page 11

International Journal Research Publication Analysis

e Jenkins

e AWS CodePipeline
e GitLab CI/CD

e Azure DevOps

Implementation Procedure:
Developer writes Template
. Template stored in Git branch
Merge Request opened

1
2
3
4. Review + Approval
5. Pipeline triggers laC execution
6

. AWS environment generated automatically

9.8 Security in 1aC Deployment

Security policies can be enforced as:

e |AM role restrictions

e Template guard policies

e Encryption enabled resource provisioning
e secrets never stored in code

e secure backend for state encryption

CHAPTER - 10 ADVANTAGES OF INFRASTRUCTURE AS CODE
Infrastructure as Code delivers massive long-term structural improvement across software
development, infrastructure engineering, cost management, operational excellence, testing

methodologies, deployment repeatability and long-term cloud governance.

10.1 Provisioning Speed and Velocity
laC drastically reduces the time needed to provision infrastructure. What earlier took days or
hours with manual provisioning now takes minutes or even seconds. Teams can create

multiple full project environments instantly during development or testing.

10.2 Elimination of Configuration Drift
Since configuration is version-controlled, any deviation between DEV, QA, Stage and
Production environments is almost eliminated. Drift detection ensures infrastructure remains

stable and consistent.

Copyright@ Page 12

International Journal Research Publication Analysis

10.3 Enhances Collaboration between DevOps and Development Teams
Infra code stored inside Git brings developers, cloud engineers, security team and ops team

together into same development ecosystem.

10.4 Reduced Human Error and Increased Reliability
Since provisioning is automated, the dependency on human command execution reduces. 1aC

avoids misconfigurations that normally arise due to manual steps.

10.5 Cost Optimization and Cloud Governance

With laC:

e unused infrastructure can be destroyed anytime

e temporary envs can be created & deleted automatically

e cluster downsizing & scaling can be governed programmatically

10.6 Automated Disaster Recovery Strategy
laC helps DR planning because full environment can be recreated in minutes in a new region.

Traditional DR setups required backup servers always running.

10.7 Critical Foundation for DevOps, GitOps, SecOps, FinOps
laC is the base layer of real DevOps automation. Without IaC, DevOps transformation cannot

achieve true automation maturity.

CHAPTER - 11 COMPARISON OF TERRAFORM AND CLOUD FORMATION
This is one of the main core chapters of this research.

11.1 Detailed Technical Comparison Table

Feature Category Terraform CloudFormation
Cloud Support Multi-cloud AWS Only
Language HCL (More readable) JSON / YAML
State File External State required Internal
Modularization Very High Medium

Learning Curve Moderate Easy for AWS ppl
Extensibility Very High Limited

Drift Detection Yes Yes

Copyright@ Page 13

International Journal Research Publication Analysis

Feature Category Terraform CloudFormation

Plan Execution terraform plan Changesets

Enterprise Adoption Rate|Very High worldwide High in AWS heavy orgs

OSS Ecosystem Massive Modules Registry| Limited
Vendor Lock-in Risk Low High (AWS Only)
Resource Creation Speed ||Faster Depends on AWS internal processing

11.2 Where Terraform is the Best Choice?

e multi-cloud companies

e hybrid cloud workloads

e large-scale enterprise automation engines

e advanced module driven repeatable deployments

e organizations practicing GitOps frameworks heavily

11.3 Where CloudFormation is the Best Choice?

e AWS only heavy workloads

e Dbanking / government sectors requiring AWS native compliance
e organizations that want native AWS rollback and support

e teams new to laC learning step by step

11.4 Combined Dual Pattern Usage Trend
Some companies even use both tools at same time. Example:
e CloudFormation for core AWS security baselines and governance

o Terraform for application layer and multi-purpose services

CHAPTER - 12 LIMITATIONS

12.1 1aC Complexity

laC requires programming knowledge. Infrastructure teams with only system admin
background need to upskill.

12.2 State Mismanagement Risk

If Terraform state file is lost or corrupted, environment provisioning breaks.

12.3 Template Maintenance

Copyright@ Page 14

International Journal Research Publication Analysis

As template count grows, hundreds of modules may need mapping which increases

complexity of documentation and version alignment.

12.4 Tool Dependency Risk
If chosen tool changes license (Terraform recently), or loses support, migration cost is very
high.

12.5 Security Misconfigurations in Code

If bad code is deployed — then large-scale mistakes can be replicated worldwide instantly.

CHAPTER - 13 RESULTS

After implementing Infrastructure as Code using AWS CloudFormation and Terraform, the
results show significant improvements in infrastructure provisioning speed, stability,
reliability, and repeatability. 1aC enabled teams to deploy AWS environments consistently
without manual errors and with full traceability. Deployment time reduced drastically from
hours to minutes. Teams were able to create and destroy environments on-demand, saving
cost and improving development agility. Version control integration provided complete
infrastructure change history which improved auditing and rollback capability. Multi-cloud
readiness through Terraform enabled hybrid enterprise adoption as well. Overall, 1aC allowed

full DevOps pipeline integration for AWS provisioning automation.

CHAPTER - 14 FUTURE SCOPE

Future of Infrastructure Automation is moving beyond declarative provisioning towards
autonomous cloud orchestration. Advanced systems will integrate:

e Policy as Code (OPA / Sentinel)

e Al Based Template Generation

e Self-Healing Infrastructure

e FinOps Integrated Autoscaling

e Security as Code enforcement

e Event-driven infra orchestration with serverless

e Full Cloud Autonomy without human command triggers

Terraform, CloudFormation and future laC engines will evolve towards Zero-Touch
Operations, where cloud can scale, deploy, destroy and optimize itself based on predictive

intelligence.

Copyright@ Page 15

International Journal Research Publication Analysis

CHAPTER - 15 CONCLUSION

Infrastructure as Code represents a foundational shift in how cloud infrastructure is deployed
and managed. AWS provisioning using Terraform and CloudFormation allows code-based,
repeatable, secure, fast, and auditable infrastructure creation. Both tools are extremely
powerful in enterprise DevOps models, with CloudFormation being AWS-native and
Terraform enabling multi-cloud automation flexibility. 1aC eliminates configuration drift,
reduces operational risks, saves cost, enhances scalability, supports DevOps pipelines and
dramatically increases development speed. The adoption of 1aC in modern organizations is
now mandatory rather than optional. This research concludes that l1aC is the backbone for the
future of automated cloud engineering and is essential for secure, scalable, and production-

grade cloud operations.

REFERENCES

HashiCorp Terraform Documentation — www.terraform.io.

AWS CloudFormation Official Developer Guide — docs.aws.amazon.com.
AWS Well Architected Framework — Amazon Web Services.

DevOps Research and Assessment (DORA) Reports 2023.

Kief Morris (ThoughtWorks). Infrastructure as Code Book.

Google Cloud DevOps Research Whitepapers.

NIST Cloud Computing Standards Publication 2022.

Martin Fowler — Infrastructure Automation Research Articles.

© N o gk~ 0w D P

Copyright@ Page 16

